Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
RSC Adv ; 14(15): 10161-10171, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38544939

RESUMO

The steric and electronic effects of specific ligands can play crucial roles in stabilizing unsaturated tetrylene species. In this work, hybrid density functional theory (DFT) methods, quantum theory of atoms in molecules (QTAIM) investigations and natural bond orbital (NBO) calculations are employed to evaluate the stabilization of low-valent E(ii) centers (E = Si, Ge, Sn, Pb) through the chelating effect generated by an electron-rich ligand containing the P[double bond, length as m-dash]C-P[double bond, length as m-dash]X moiety (X = O or S). Based on several types of analyses, such as the bond dissociation energy (BDE) or the interplay between attractive (i.e., charge-transfer) and repulsive (i.e., Pauli-exchange) effects, we highlight that the stabilization energy induced by chelation is up to ca. 70 kcal mol-1 for silylenes, yet slightly decreases within the heavier analogues. Moreover, it is emphasized that chelate-stabilized silylenes can form highly stable hybrid metal-metalloid complexes with transition metals (e.g., gold). Due to push-pull effects occurring in the X→Si(ii)→Au fragment, the Si(ii)→Au bonding is significantly stronger than the X→Au, P(sp2)→Au or π(C[double bond, length as m-dash]P)→Au donor-acceptor bonds, which are potentially formed by the electron-rich P[double bond, length as m-dash]C-P[double bond, length as m-dash]X unit with the AuCl fragment. These findings are supported by energy decomposition analysis (EDA) calculations.

2.
Free Radic Biol Med ; 124: 260-274, 2018 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-29928975

RESUMO

Hemoglobin has previously been shown to display ascorbate peroxidase and urate peroxidase activity, with measurable Michaelis-Menten parameters that reveal a particularly low Km for ascorbate as well as for urate - lower than the respective in vivo concentrations of these antioxidants in blood. Also, direct detection of a hemoglobin-ascorbate interaction was possible by monitoring the 1H-NMR spectrum of ascorbate in the presence of hemoglobin. The relative difference in structures between ascorbate and urate may raise the question as to exactly what the defining structural features would be, for a substrate that binds to hemoglobin with high affinity. Reported here are Michaelis-Menten parameters for hemoglobin acting as peroxidase against a number of other substrates of varying structures - gallate, caffeate, rutin, 3-hydroxyflavone, 3,6-dihydroxyflavone, quercetin, epicatechin, luteolin - all with high affinities (some higher than those of physiologically-relevant redox partners of Hb - ascorbate and urate). Moreover, this high affinity appears general to animal hemoglobins. 1H-NMR and 13C-NMR spectra reveal a general pattern wherein small hydrophilic antioxidants appear to all have their signals affected, presumably due to binding to hemoglobin. Fluorescence and calorimetry measurements confirm these conclusions. Docking calculations confirm the existence of binding sites on hemoglobin and on myoglobin for ascorbate as well as for other antioxidants. Support is found for involvement of Tyr42 in binding of three out of the four substrates investigated in the case of hemoglobin (including ascorbate and urate, as blood-contained relevant substrates), but also for Tyr145 (with urate and caffeate) and Tyr35 (with gallate).


Assuntos
Antioxidantes/química , Antioxidantes/metabolismo , Hemoglobinas/química , Hemoglobinas/metabolismo , Animais , Bovinos , Simulação de Acoplamento Molecular , Oxirredução
3.
J Mol Model ; 17(7): 1719-25, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21057836

RESUMO

DFT calculations have been performed on the derivatives of formula CH2OP2 to determine their total energy, the relative energy between the isomers and their geometry. Among compounds with a P-C-P linkage, the most stable one is the 2-hydroxy-1,2-diphosphirene II.1, a three-membered heterocycle with a P=C unsaturation. The phosphavinylidene(oxo)phosphorane HP=C=P(O)H IV.5 (which has the same skeleton as the experimentally obtained Mes*P=C=P(O)Mes*) lies 36.30 kcal mol⁻¹ above it. The least stable compounds are carbenes; the singlet carbenes are more stable than the triplet ones.


Assuntos
Modelos Químicos , Fosforanos/química , Simulação por Computador , Isomerismo , Estrutura Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...